

SKM

MULTISTAGE CENTRIFUGAL PUMPS

APPLICATIONS

STANDART SKM multistage pumps are suitable for clean or slightly contaminated liquids with low viscousity and are suitable for water supply, pressure boosting, agricultural irrigation, chemical industries, oil industries and power plants.

TECHNICAL DATA

Discharge Nozzle Range DN32......DN200MM
Capacities up to 700m3/h

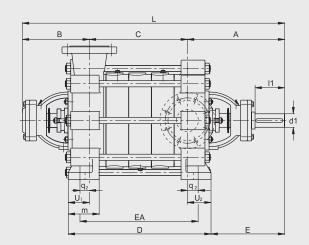
Heads upto 2900rpm

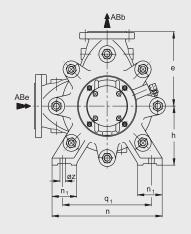
Operating temperature 10°C to 110°C(140°C on

request)

Casing Pressure(Pmax) 30bar

DESIGN FEATURES


- Horizontal ring section, multistage, centrifugal pumps with closed impellers and diffuser
- 9 models from DN 32 Tto ON 200
- Suction nozzle flanges are according to ISO 7005-21PN16 and disharge nozzle flanges are according to ISO7005-2/PN 40(PN50)
- In standard production, suction flange is placed on the right side and close to the coupling while discharge flange is at the other end and radially upwards (R 310).
 If other flange orientation is required, it should be indicated in the order.
- Axial thrust is balanced by back wear ring and balancing holes in each impeller
- All impellers are balanced statically and dynamically according to ISO 1940 class 6.3


SHAFT SEAL

- Soft packing is applied in standard production upto 1100C
- Pumps with mechanical seal can also be manufactured upon request.

PUMP NAMING

Pump type range SKM
Discharge (DN in mm) 100
Nominal impeller Diameter(mm) 6

TECHNICAL DATA

Pump Type	Dimensions (mm)																Shaft End				Weight (kg)			
	ABe	ABb	Α	В	EA	D	L	Е	е	h	m	n	n1	q1	q2	ØΖ	u1	u2	d1	11	٧	u	G1	g
80	100	80	321	250	C+84	C+124	C+571	259	265	210	85	410	90	340	42	15	62	62	42	110	45.3	12	146	26
100	125	100	389	285	C+96	C+140	C+674	319	300	250	90	450	90	370	48	15	70	70	48	110	51.8	14	205	42
125	150	125	412	300	C+110	C+160	C+712	332	375	300	112	572	105	450	55	20	80	80	58	140	62.8	16	370	75
150	200	150	486	360	C+130	C+208	C+846	381	425	350	130	655	110	550	65	26	103	105	70	140	74.9	20	630	120
200	250	200	515	385	C+130	C+210	C+900	410	500	400	130	650	100	550	65	27	105	105	85	170	90.4	22	945	200

NOTE: Right reserved to change without notice.

Pump Weight = $G1 + (n \times g)$ (n : number of stages)

